

Pentafluorophenyl-(*tert*-butoxycarbonylamino)methylcarbamates: Synthesis, isolation and application to the synthesis of ureidopeptides

Vommina Venkata Sureshbabu*, N Narendra & Kantharaju

Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi,
Bangalore University, Bangalore 560 001, India

E-mail: hariccb@rediffmail.com

Received 8 October 2007; accepted (revised) 17 March 2008

The one-pot synthesis of pentafluorophenyl-(*tert*-butoxycarbonylamino)methyl carbamates starting from *N*-Boc amino acids is described. Ultrasound mediated concomitant rearrangement and coupling reactions have resulted in the production of good yields of the active methyl carbamates. The carbamates have been employed as monomeric building blocks for the synthesis of dipeptidyl urea esters/ acids. All the compounds obtained have been fully characterized by IR, ¹H NMR, ¹³C NMR and mass spectroscopy.

Keywords: Boc-amino acids, Curtius rearrangement, ultrasonication, concomitant synthesis, pentafluorophenyl-(*tert*-butoxycarbonylamino)methylcarbamates, peptidyl ureas

Peptidyl ureas find a varied range of applications in biological as well as structural chemistry¹. As drugs, they are used as HIV-1 protease inhibitors^{2,3}, CCK-B receptor antagonists⁴ and endothelin antagonists⁵ and secretagogues^{6,7}. Ureido bonds are introduced into peptide backbone to obtain conformationally controlled well-defined structures⁸ and to stabilize secondary structural elements like turns, helices, or sheets, *via* non covalent interactions^{9,10}.

The first synthesis of ureido analogues of biologically active peptide (angiotensin II) was described more than two decades ago by Chipens *et al.*¹¹⁻¹³ Traditional methods for the synthesis of ureidopeptides include the reaction of amino acid esters with isocyanates or with phosgene^{14,15}, carbonyldiimidazole¹⁶ and disuccinimido carbonate¹⁷. Since the usage of phosgene raises safety concerns, reagents like *bis*(4-nitrophenyl)carbonate¹⁸, triphosgene [*bis*(trichloromethyl)carbonate]¹⁹, di-*tert*-butyl-dicarbonate²⁰, 1,1-carbonylbis benzotriazole²¹, *S,S*-dimethylthiocarbonate²² and trihaloacetylchlorides²³ have been used as safer alternatives. The solid phase synthesis of oligoureia related to [Leu]enkephalin has been reported *via* conversion of *N*-Fmoc- β -amino alky azides into the corresponding amine and reacting the later with nitrophenylchloroformate to obtain 4-nitrophenylcarbamate as reactive monomers²⁴. Similar strategy has also been adopted for urea synthesis with Boc-chemistry²⁵.

The isocyanates obtained from the Curtius rearrangement of acyl azides²⁶ can be trapped by a variety of nucleophiles including amines and alcohols to prepare ureas and carbamates respectively. A number of methods has been developed based on this principle to insert urea bonds from the C-terminus of amino acid and peptides. In all these cases, the acyl azides obtained from carboxylic acid derivatives like hydrazides²⁷, acyl chlorides²⁸ and mixed anhydrides^{29,30} are isolated and rearranged in separate steps. However, since the acyl azides are well-known to be unstable with limited shelf-life, one-pot processes that allow the direct conversion of carboxylic acids into reactive carbamates have become very popular^{31,32}. Guichard *et al.*, have demonstrated an efficient solid phase synthesis of oligoureas using *O*-succinimidyl-(9*H*-fluoren-9-ylmethoxycarbonylamino/*tert*-butoxycarbonylamino)ethylcarbamates, as activated monomers. These carbamates were prepared by coupling the isocyanates obtained from the rearrangement of *N*-Fmoc/Boc-protected- β -amino acid azides, with *N*-hydroxysuccinimide³³. They have also prepared *O*-succinimidyl-(Boc/Fmoc/Z amino)methyl carbamates from the corresponding *N*-protected α -amino acids³⁴.

The application of commercially available, stable, pentafluorophenyl ester of N^{α} -urethane protected amino acids in solid phase as well as solution phase peptide coupling reaction is well documented in literature³⁵. The pentafluorophenyl derivatives are

highly reactive and remain in usable form for long durations. The Boc-pentafluorophenyl esters have been used successfully for assembling decamers in solution phase^{36,37}.

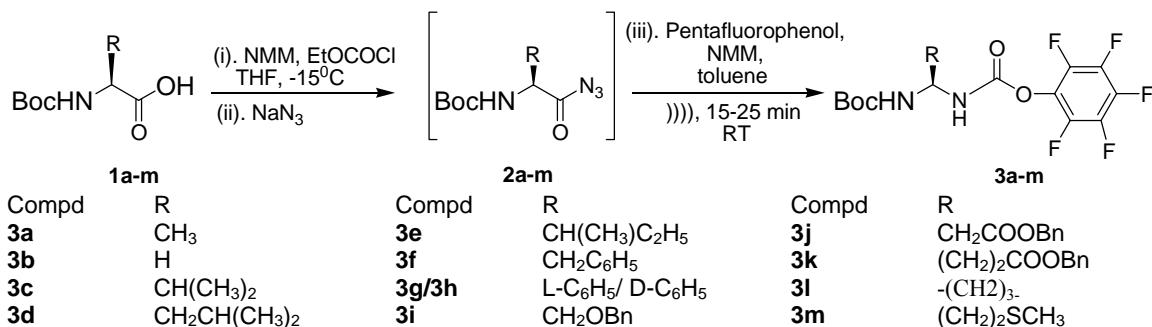
Herein is reported the ultrasonication assisted efficient single-pot concomitant synthesis of pentafluorophenyl-(*tert*-butoxycarbonylamino)methyl carbamates **3** and their ready conversion into dipeptidyl urea esters **5a-h** and dipeptidyl urea acids **5i-n**. The direct conversion of the acid azide into methyl carbamate has resulted in the increased yields of carbamates. Unlike the previously reported procedures which carry out the reaction under conventional high temperature reflux, the present method uses ultrasound to accomplish the reaction at RT. This is of significant practical advantage as it enables the convenient handling of acid azides that are known to be explosive at high temperatures.

Results and Discussion

N-Boc-protected amino acids **1** were first converted to their acyl azides **2** by reaction of their mixed anhydrides [generated by treatment with EtOCOCl / *N*-methylmorpholine (NMM)] with aqueous NaN₃ at -10 to -15°C. After a simple workup, the resulting azide was dissolved in toluene along with equimolar amounts of pentafluorophenol and NMM and then subjected to ultrasound for about 15-25 min at ambient temperature. The rearrangement of the acid azide along with the concomitant coupling of the generated isocyanate with the phenol resulted directly in the methyl carbamate **3**. After the reaction, the product **3** precipitated out from the toluene solution and was filtered. A single recrystallization using DMSO-water was sufficient to obtain the analytically pure compounds. The entire reaction sequence, as shown in **Scheme I**, was complete within 60 min. All the methyl carbamates **3** made were characterized by IR, ¹³C NMR and mass spectrometry. The pentafluorophenyl-(*tert*-butoxycarbonylamino)methylcarbamates **3a-m** had in their IR spectrum a characteristic sharp peak at 1745-1755 cm⁻¹.

The physical constants of **3a-m** are given in **Table I**. The methyl carbamates were found stable for long periods of storage at ambient temperature with no noticeable degradation or change in spectral behavior.

The usefulness of methyl carbamates **3** as reactive monomers for the urea synthesis was then demonstrated. Ureidopeptide esters (**Scheme II**) as

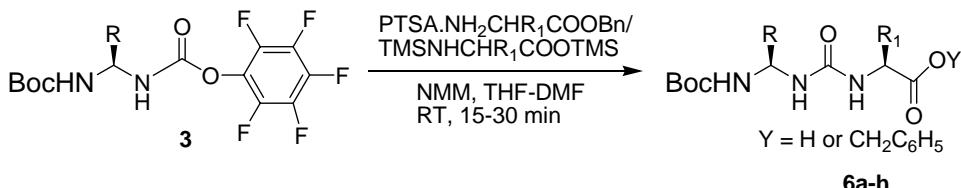

well as ureidopeptide acids were synthesized by reacting amino acid esters and *N, O* bis-TMS [amino acids] with **3**. The reaction proceeded rapidly with the disappearance of all starting materials within 30 min. After the completion of the reaction, the solvent was removed under reduced pressure and the residue was triturated in water (to remove side product pentafluorophenol formed during the reaction) and purified by recrystallization. The ureas **6a-h** were obtained as pure compounds in good yields.

Epimerization during the two reactions *viz.*, synthesis of carbamates **3** and their conversion into ureas was studied using NMR spectroscopy. The pentafluorophenyl methyl carbamate derived from L-phenylalanine *via* the above method was reacted with optically pure 1-phenylethylamines (both the + and - isomers, **7a** and **7b**) and with a racemic sample in separate experiments (**Scheme III**). The urea adducts Boc-Val- ψ (NH-CO-NH)-*R*-(+)-1-phenylethylamine **8a**, Boc-Val- ψ (NH-CO-NH)-*S*-(+)-1-phenylethylamine **8b** and Boc-Val- ψ (NH-CO-NH)-*R,S*-(\pm)-1-phenylethylamine **8c** thus obtained were subjected to ¹H NMR analysis. Their ¹H NMR spectra revealed distinct doublets for CH₃ group in case of ureas obtained by coupling enantiomerically pure 1-phenylethylamine. On the other hand, the adduct obtained from the racemic mixture of 1-phenylethylamine had two methyl group doublets. This clearly showed that the synthesis of active carbamate as well as their conversion to ureas was free from epimerization. The ¹H NMR spectra of **8a** [δ 1.28 and 1.30 (CH₃, d)]; **8b** [δ 1.27 and 1.29 (CH₃, d)] and for **8c** [δ 1.28, 1.29, 1.29 and 1.306 (CH₃, d)] are given in the **Figure 1**.

Experimental Section

Materials and Methods

The melting points were recorded in open capillary tubes and are uncorrected. The reactions were carried out using a sonic bath (35 kHz, Elma, T 310/H German make) at ambient temperature. Infrared spectra were recorded on a Nicolet Impact 400D FT-IR spectrometer (KBr pellets, 3 cm⁻¹ resolution). Specific rotations were recorded on Rudolf Research Autopol IV automatic polarimeter. Elemental analyses were carried out using Perkin Elmer Analyser and the samples were dried for 24 hr under vacuum before analysis. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX 400 MHz spectrometer. Mass spectra were recorded on MALDI-TOF (Kratos) and ESI-MS.


Scheme I**Table I** — Physical constants of pentafluorophenyl-(*tert*-butoxycarbonylamino) methyl carbamates

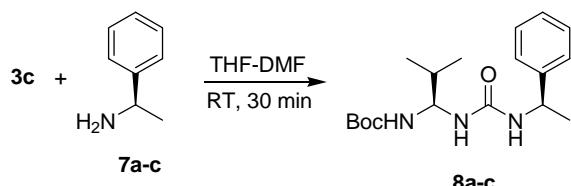
Compd	Yield (%)	m.p. (°C)	[α] _D ²⁵ (c1,DMF)	Elemental analysis			Spectral data
				Found (Calcd.) (%)	C	H	
				Found (Calcd.) (%)	C	H	N
3a	88	123	+1.6	45.20 (45.41)	4.14 4.08	7.80 7.57)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.21 (9H, s), 1.52 (3H, t, <i>J</i> =10.1 Hz), 5.10 (1H, m), 5.92 (1H, br), 6.36 (1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 23.2, 31.2, 55.8, 76.5, 141.2, 142.3, 143.8, 149.6, 165.1, 172.2.
3b	87	120	-	43.55 (43.83)	3.78 3.68	7.60 7.86)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.29(9H, s), 4.98, 6.0 (1H, br), 6.31(1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.5, 54.3 76.3, 141.1, 142.5, 143.6, 149.6, 165.4, 172.0.
3c	89	126	-9.2	48.00 (48.25)	4.90 4.81	7.10 7.03)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.10 (6H, d, <i>J</i> =8.5 Hz), 1.27 (9H, s), 2.91 (1H, m), 5.23(1H, m), 5.82 (1H, br), 6.29(1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 17.3, 29.1, 31.3, 58.2, 76.4, 141.3, 142.2, 144.0, 150.1, 165.3, 172.4.
3d	85	122	-8.5	49.62 (49.52)	5.20 5.13	6.84 6.79)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.11 (6H, d, <i>J</i> =7.8 Hz), 1.32 (9H, s), 1.69 (2H, m), 1.85 (1H, m), 5.25(1H, m), 6.10 (1H, br), 6.29 (1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 22.3, 23.1, 31.4, 43.8, 58.7, 76.2, 141.1, 142.5, 143.1, 149.6, 165.0, 172.3.
3e	84	125	-8.8	49.70 (49.52)	5.10 5.13	6.74 6.79)	¹ H NMR (DMSO- <i>d</i> ₆): δ 0.98 (3H, t, <i>J</i> =10.9 Hz), 1.16 (3H, d, <i>J</i> =8.1 Hz), 1.25 (2H, m), 1.31 (9H, s) , 2.86, 5.31(1H, m), 5.95 (1H, br), 6.31(1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 12.1, 12.9, 22.3, 31.2, 40.3, 57.8, 76.6, 141.5, 142.6, 143.4, 149.5, 164.9, 172.1.
3f	88	143	-6.3	53.70 (53.82)	4.10 4.29	6.54 6.28)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.29(9H, s), 3.21 (2H, m), 5.50(1H, m), 5.92 (1H, br), 6.10 (1H, br), 7.12-7.29 (5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.6, 44.3, 59.8, 76.4, 125.1 127.1, 127.8, 135.8, 141.3, 142.2, 143.9, 149.6, 165.1, 172.2.
3g	85	126	-2.5	52.68 (52.78)	4.10 3.96	6.34 6.48)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.26 (9H, s), 5.48(1H, m), 5.82 (1H, br), 6.21(1H, br), 7.05-7.21 (5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.5, 56.2, 76.6, 126.9, 128.1, 128.6, 139.3, 141.2, 142.4, 144.1, 150.1, 165.4, 172.0.
3h	87	130	+2.8	52.84 (52.78)	4.20 3.96	6.44 6.48)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.26 (9H, s), 5.48(1H, m), 5.82 (1H, br), 6.21(1H, br), 7.05-7.21 (5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.5, 56.2, 76.6, 126.9, 128.1, 128.6, 139.3, 141.2, 142.4, 144.1, 150.1, 165.4, 172.0.
3i	88	127	-5.1	52.71 (52.95)	4.40 4.44	5.44 5.88)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.22 (9 H, s), 3.82 (2H, m), 4.68 (2H, s), 5.63(1H, m), 5.99(1H, br), 6.18 (1H, br), 7.11-7.23 (5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.3, 56.9, 72.1, 76.3, 78.3, 127.0, 127.6, 127.9, 137.9, 141.1, 142.2, 143.7, 149.8, 165.2, 172.1.
3j	89	142	-4.8	52.54 (52.39)	4.10 4.20	5.44 5.55)	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.30 (9 H, s), 2.89 (2H, m), 5.10 (2H, s), 5.85(1H, m), 5.90(1H, br), 6.08(1H, br), 7.02-7.21(5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 31.4, 38.9, 57.1, 70.1, 76.4, 127.1, 127.9, 128.1, 138.3, 141.2, 142.4, 143.5, 150.0, 165.5, 172.3, 175.6.

—Contd

Table I — Physical constants of pentafluorophenyl-(*tert*-butoxycarbonylamino) methyl carbamates—*Contd*

Compd	Yield (%)	m.p. (°C)	[α] _D ²⁵ (c1,DMF)	Elemental analysis			Spectral data
				Found (%)	Calcd. (%)	Elemental analysis	
3k	88	117	-5.3	53.34 (53.29)	4.14 4.47	5.30 5.40	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.32 (9 H, s), 2.45 (2H, m), 2.68 (2H, t, <i>J</i> =10.9 Hz), 5.13 (2H, s), 5.80 (1H, m), 5.92 (1H, br), 6.10 (1H, br), 7.0-7.22 (5H, m); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 28.3, 31.3, 35.2, 57.3, 69.9, 76.5, 127.0, 127.3, 28.1, 137.6, 141.4, 142.3, 143.4, 149.9, 165.5, 172.1, 173.8.
3l	82	132	-7.9	48.84 (48.61)	4.30 4.08	6.90 7.09	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.30 (9 H, s), 1.58 (2H, m), 1.89 (2H, m), 3.30 (2H, m), 5.52 (1H, m), 5.81 (1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 22.3, 30.1, 31.2, 43.8, 55.8, 76.6, 141.2, 142.5, 143.4, 149.8, 165.2, 172.3.
3m	85	105	+5.9	44.84 (44.76)	4.50 4.23	6.60 6.52	¹ H NMR (DMSO- <i>d</i> ₆): δ 1.29 (9 H, s), 2.19 (3H, s), 3.10 (2H, m), 5.89 (1H, m), 5.91 (1H, br), 6.31 (1H, br); ¹³ C NMR (DMSO- <i>d</i> ₆): δ 19.3, 31.3, 44.8, 57.9, 76.7, 141.1, 142.3, 143.5, 149.9, 165.2, 172.3.

Compd	R	R ₁	Y
6a	CH ₂ CH(CH ₃) ₂	CH ₃	CH ₂ C ₆ H ₅
6b	CH ₂ OBn	H	CH ₂ C ₆ H ₅
6c	(CH ₂) ₂ COOBn	H	CH ₂ C ₆ H ₅
6d	CH(CH ₃) ₂	CH ₃	CH ₂ C ₆ H ₅
6e	(CH ₂) ₂ COOBn	CH ₃	H
6f	CH(CH ₃) ₂	CH ₃	H
6g	CH ₂ OBn	CH ₃	H
6h	CH ₂ OBn	CH(CH ₃) ₂	H


Scheme II

All solvents were freshly distilled prior to use. Amino acid methyl ester hydrochlorides were prepared by using methanol and thionyl chloride and amino acid benzyl ester *p*-toluene sulfonate were prepared by reported procedure³⁸.

General procedure for the synthesis of pentafluorophenyl-(*tert*-butoxycarbonylamino)methyl carbamates 3a-m. Boc- α -amino acid **1** (1 mmol) was dissolved in THF (5 mL) and cooled to -20°C. After addition of *N*-methylmorpholine (1.1 mmol) and ethyl chloroformate (1.1 mmol), the mixture was stirred at -20 °C for 15 min and allowed to warm to -5°C. It was treated with an aqueous solution of Na₃ (2.5 mmol in 2 mL of water) for 5 min. After removal of the solvent under reduced pressure, the resulting residue was diluted with CH₂Cl₂ (15 mL), washed with 5% citric acid solution (3×5 mL), 5% sodium bicarbonate solution (3×5 mL), brine, dried over

anhydrous Na₂SO₄ and concentrated under reduced pressure to give the acyl azide **2**, which was used without further purification. The acyl azide was taken in toluene (5 mL), pentafluorophenol (1 mmol) and NMM (1.1 mmol) were successively added. It was sonicated in an ultrasound bath for about 15-25 min at ambient temperature. After the completion of the reaction, the carbamates which crystallized out from the toluene solution were collected by filtration. All the carbamates **3** made have been fully characterized. The physical and spectral data are given in **Table I**.

General procedure for the synthesis of *N*^a-Boc-protected dipeptidylurea esters 6a-h. To a stirred solution of amino acid benzyl ester *p*-toluenesulfonate salt **4** (1.3 mmol) in THF- DMF (2:1, 5 mL), NMM (1.2 mmol) and pentafluorophenyl methylcarbamate **3** (1 mmol) were added successively and stirred at RT till the completion of the reaction. After the

Scheme III

completion of the reaction, the solvent was evaporated under reduced pressure and the residue was taken into water, filtered and purified by recrystallization from DMSO-water to afford the pure urea esters **6a-h** as crystalline off-white solids.

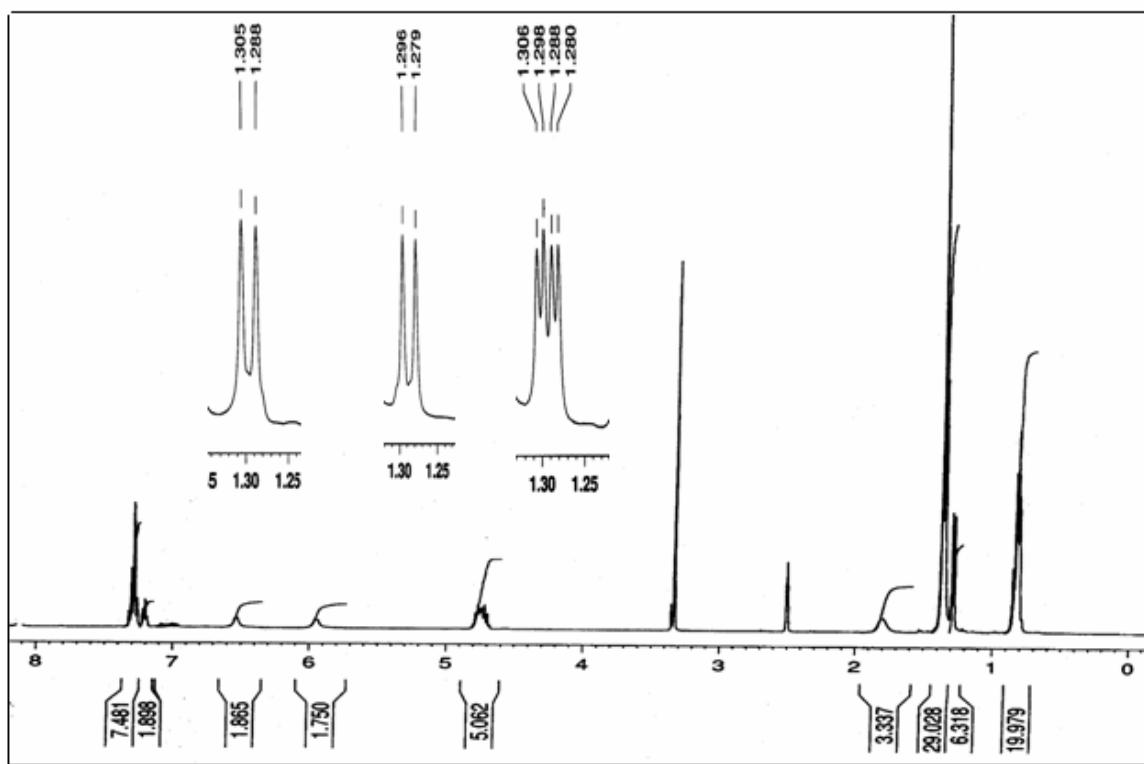
General procedure for the synthesis of *N*^a-Boc-protected dipeptidylurea acids **6i-h.** To a stirred suspension of amino acid (1 mmol) in CH_2Cl_2 (5 mL) was added freshly distilled TMS-Cl (2.2 mmol) and TEA (2.2 mmol) and refluxed for 2 hr. To the reaction mixture, methyl carbamate 3 (1 mmol) in THF-DMF (2:1, 5 mL) was added and stirred for 30 min at RT. After the completion of the reaction, the solvent was evaporated under reduced pressure and the residue was filtered, triturated in water (to remove side product formed during the reaction) and purified by recrystallization from DMSO-water (7:3) or ethyl acetate and hexane (2:1) to afford the pure urea acids **6i-h** as a crystalline off-white solids.

Boc-Leu-ψ(NH-CO-NH)-Ala-OBn, **6a.** Yield: 70%; m.p. 130-32°C; ¹H NMR (DMSO-*d*₆): δ 0.93 (6H, d, *J*= 7.3 Hz), 1.16 (3H, d, *J*= 7.7 Hz), 1.35 (11H, s), 1.65 (1H, m), 3.8-3.9 (2H, m), 5.1 (2H, s), 5.35 (1H, d, *J*= 8.2 Hz), 6.3 (1H, d), 6.5 (1H, d, *J*= 7.9 Hz), 7.2-7.4 (5H, m); ¹³C NMR (DMSO-*d*₆): δ 17.5, 22.1, 23.3, 24.5, 28.6, 48.9, 51.2, 61.9, 78.1, 126.9, 127.6, 129.1, 137.5, 155.0, 156.8, 175.5; ESI-MS: *m/z* 408.8 [M+H]⁺. Anal. Calcd. for $\text{C}_{21}\text{H}_{33}\text{N}_3\text{O}_5$: C, 61.90; H, 8.16; N, 10.31. Found: C, 61.80; H, 7.82; N, 10.10%.

Boc-Ser(Bn)-ψ(NH-CO-NH)-Gly-OBn, **6b.** Yield: 76%; m.p. 127-28°C; ¹H NMR (DMSO-*d*₆): δ 1.3-1.45 (18H, s), 3.7-3.85 (5H, m), 4.9 (2H, s), 5.35 (1H, d, *J*= 7.9 Hz), 6.3-6.4 (2H, m), 6.5 (1H, d, *J*= 8.0 Hz), 7.2-7.45 (5H, m); ¹³C NMR (DMSO-*d*₆): δ 27.9, 28.3, 51.9, 61.3, 61.9, 65.3, 77.5, 78.1, 126.9, 128.6, 129.1, 137.5, 155.0, 156.8, 175.5; ESI-MS: *m/z* 425.5 [M+H]⁺. Anal. Calcd. for $\text{C}_{21}\text{H}_{33}\text{N}_3\text{O}_6$: C, 59.56; H, 7.85; N, 9.92. Found: C, 61.10; H, 8.09; N, 10.22%.

Boc-Glu(Obn)-ψ(NH-CO-NH)-Gly-OBn, **6c.** Yield: 71%; m.p. 131-32°C; ¹H NMR (DMSO-*d*₆): δ 1.35 (9H, s), 2.6 (2H, m), 2.95 (2H, t, *J*= 9.5 Hz), 3.85 (3H, m), 4.95 (4H, s), 5.3 (1H, d, *J*= 7.6 Hz), 6.3-6.45 (2H, m), 7.3-7.55 (10H, m); ¹³C NMR

(DMSO-*d*₆): δ 27.5, 38.9, 41.2, 53.5, 57.5, 61.3, 62.5, 78.3, 126.9, 127.7, 129.4, 137.9, 155.2, 156.8, 174.5; ESI-MS: *m/z* 501.7 [M+H]⁺. Anal. Calcd. for $\text{C}_{26}\text{H}_{33}\text{N}_3\text{O}_7$: C, 62.51; H, 6.66; N, 8.41. Found: C, 62.20; H, 6.52; N, 8.38%.


Boc-Val-ψ(NH-CO-NH)-Ala-OBn, **6d.** Yield: 70%; m.p. 152-54°C; ¹H NMR (DMSO-*d*₆): δ 0.93 (6H, t, *J*= 9.5 Hz), 1.17 (3H, d, *J*= 8.3 Hz), 1.35 (9H, s), 1.85 (1H, m), 3.7-3.8 (2H, m), 4.95 (2H, s), 5.2 (1H, d, *J*= 7.7 Hz), 6.35-6.4 (2H, m), 7.3-7.5 (5H, m); ¹³C NMR (DMSO-*d*₆): δ 17.5, 18.9, 19.5, 28.9, 51.0, 59.2, 61.5, 78.1, 126.9, 127.7, 129.4, 137.9, 155.1, 157.8, 174.5; ESI-MS: *m/z* 395.4 [M+H]⁺. Anal. Calcd. for $\text{C}_{20}\text{H}_{31}\text{N}_3\text{O}_5$: C, 61.05; H, 7.94; N, 10.68. Found: C, 61.20; H, 8.02; N, 10.38%.

Boc-Glu(Obn)-ψ(NH-CO-NH)-Ala-OH, **6e.** Yield: 70%; m.p. 140-41°C; ¹H NMR (DMSO-*d*₆): δ 1.15 (3H, d, *J*= 7.1 Hz), 1.31 (9H, s), 2.5 (2H, m), 2.85 (2H, m), 3.45 (1H, m), 3.9 (1H, m), 5.1 (2H, s), 5.3 (1H, d, *J*= 7.9 Hz), 6.2 (1H, br), 6.5 (1H, d, *J*= 8.2 Hz), 7.3-7.4 (5H, m), 8.25 (1H, d); ¹³C NMR (DMSO-*d*₆): δ 17.7, 28.1, 38.5, 40.3, 50.0, 50.3, 62.5, 74.3, 126.7, 128.5, 129.5, 137.2, 155.2, 156.5, 158.2, 175.8; MS (FAB⁺): *m/z* 424.3. Anal. Calcd. for $\text{C}_{20}\text{H}_{29}\text{N}_3\text{O}_7$: C, 56.73; H, 6.90; N, 9.92. Found: C, 56.66; H, 6.50; N, 10.50%.

Boc-Val-ψ(NH-CO-NH)-Ala-OH, **6f.** Yield: 71%; m.p. 146-48°C; ¹H NMR (DMSO-*d*₆): δ 0.93 (6H, t, *J*= 9.1 Hz), 1.16 (3H, d, *J*= 7.5 Hz), 1.3 (9H, s), 1.85 (1H, m), 3.8-3.9 (2H, m), 5.2 (1H, d, *J*= 7.8 Hz), 6.2-6.35 (2H, m), 8.15 (1H, d, *J*= 8.0 Hz); ¹³C NMR (DMSO-*d*₆): δ 17.4, 18.7, 19.5, 28.1, 29.4, 49.5, 58.1, 75.3, 155.2, 156.8, 176.5; MS (FAB⁺): *m/z* 303.9. Anal. Calcd. for $\text{C}_{13}\text{H}_{25}\text{N}_3\text{O}_5$: C, 51.47; H, 8.31; N, 13.85. Found: C, 52.08; H, 8.57; N, 13.50%.

Boc-Ser(Bn)-ψ(NH-CO-NH)-Ala-OH, **6g.** Yield: 67%; m.p. 117-19°C; ¹H NMR (DMSO-*d*₆): δ 1.16 (3H, d, *J*= 7.9 Hz), 1.2-1.35 (18H, s), 3.35 (2H, d, *J*= 7.3 Hz), 3.75-3.9 (2H, m), 5.25 (1H, d, *J*= 7.9 Hz), 6.2-6.35 (2H, m), 8.25 (1H, d, *J*= 8.3 Hz); ¹³C NMR (DMSO-*d*₆): δ 17.4, 27.0, 28.3, 49.1, 51.7, 62.5, 74.7, 75.1, 155.1, 156.8, 174.5; MS (FAB⁺): *m/z* 348.3. Anal. Calcd. for $\text{C}_{15}\text{H}_{29}\text{N}_3\text{O}_6$: C, 51.86; H, 8.41; N, 12.10. Found: C, 51.50; H, 7.92; N, 12.38%.

Boc-Ser(Bn)-ψ(NH-CO-NH)-Val-OH, **6h.** Yield: 68%; m.p. 135-37°C; ¹H NMR (DMSO-*d*₆): δ 0.91 (6H, t, *J*= 8.5 Hz), 1.35 (9H, s), 1.85 (1H, m), 3.45 (2H, d, *J*= 7.7 Hz), 3.7-3.85 (2H, m), 4.9 (2H, s), 5.15 (1H, d, *J*= 8.0 Hz), 6.2-6.35 (2H, m), 7.2-7.35 (5H, m), 8.15 (1H, d, *J*= 8.3 Hz); ¹³C NMR (DMSO-*d*₆):

Figure 1 — ^1H NMR spectrum of Boc-Val-ψ(NH-CO-NH)-R-(+)-1-phenylethylamine: Inset figure shows splitting pattern of CH_3 group of 1-phenylethylamine in urea adducts *R*-(+)-1-phenylethylamine **8a**, *S*-($-$)-1-phenylethylamine **8b** and *R,S*-(\pm)-1-phenylethylamine **8c**

δ 18.5, 19.5, 28.3, 29.7, 49.0, 52.1, 62.3, 63.1, 75.5, 126.5, 128.7, 129.3, 137.1, 154.7, 156.8, 176.5; MS (FAB $^+$): *m/z* 410.1. Anal. Calcd. for $\text{C}_{20}\text{H}_{31}\text{N}_3\text{O}_6$: C, 58.66; H, 7.63; N, 10.26. Found: C, 58.78; H, 8.07; N, 10.20%.

Test for racemization. To a solution of pentafluorophenyl-1- $\{\text{[(}tert\text{-butoxycarbonyl}\text{)amino]-2\text{-methylpropyl}\}$ carbamate (1 mmol) derived from N^{α} -Boc-valine was added *R*-(+), *S*-($-$) and *R,S*-(\pm)-1-phenylethylamine (0.121 g, 1 mmol) in separate experiments. After the completion of the reaction, the residue was triturated with water, filtered and purified by recrystallization to obtain the diastereomerically pure urea adducts **8a-c**.

Boc-Val-ψ(NH-CO-NH)-R-(+)-1-phenylethylamine, **8a.** Yield: 72%; m.p. 141-42°C; $[\alpha]_D^{25}$: + 28.6 (c 1, DMSO); ^1H NMR (DMSO- d_6): δ 0.8-0.9 (6H, m), 1.28-1.30 (3H, d), 1.35 (9H, s), 1.85 (1H, m), 3.3 (1H, m), 4.7-4.8 (2H, m), 5.95 (1H, br), 6.55 (1H, br), 7.2-7.35 (5H, m); MS (FAB $^+$): *m/z* 336.1. Anal. Calcd. for $\text{C}_{18}\text{H}_{29}\text{N}_3\text{O}_3$: C, 64.45; H, 8.71; N, 12.53. Found: C, 64.78; H, 8.23; N, 12.59%.

Boc-Val-ψ(NH-CO-NH)-S-(-)-1-phenylethylamine, **8b.** Yield: 72%; m.p. 137-39°C; $[\alpha]_D^{25}$: - 29.3 (c 1,

DMSO- d_6); ^1H NMR (DMSO- d_6): δ 0.8-0.9 (6H, m), 1.27-1.29 (3H, d), 1.35 (9H, s), 1.85 (1H, m), 3.32 (1H, m), 4.7-4.8 (2H, m), 5.95 (1H, br), 6.5 (1H, br), 7.2-7.35 (5H, m); MS (FAB $^+$): *m/z* 336.2. Anal. Calcd. for $\text{C}_{18}\text{H}_{29}\text{N}_3\text{O}_3$: C, 64.45; H, 8.71; N, 12.53. Found: C, 64.58; H, 8.13; N, 12.29%.

Boc-Val-ψ(NH-CO-NH)-R, S-(\pm)-1-phenylethylamine, **8c.** Yield: 72%; m.p. 138-40°C; ^1H NMR (DMSO- d_6): δ 0.8-0.9 (6H, m), 1.28-1.30 (3H, two d), 1.35 (9H, s), 1.85 (1H, m), 3.3 (1H, m), 4.7-4.8 (2H, m), 5.95 (1H, br), 6.55 (1H, br), 7.2-7.35 (5H, m); MS (FAB $^+$): *m/z* 336.0. Anal. Calcd. for $\text{C}_{18}\text{H}_{29}\text{N}_3\text{O}_3$: C, 64.45; H, 8.71; N, 12.53. Found: C, 64.48; H, 8.53; N, 12.50%.

Conclusion

Pentafluorophenyl-(*tert*-butoxycarbonylamino)methyl carbamates **3** were prepared in high yields from their corresponding *N*-Boc-protected α -amino acid azides through the ultrasonication assisted Curtius rearrangement followed by the concomitant coupling with pentafluorophenol. All the methyl carbamates prepared were stable solids with extended shelf-life. They were readily and quantitatively

converted into dipeptidyl urea esters/ acids by reacting with amino acid esters/ *bis* TMS amino acids. The NMR analysis of the synthesis of active carbamates and their conversion into ureas has revealed both the protocols to be epimerization free.

Acknowledgements

The authors thank the Department of Science and Technology, Govt. of India for financial assistance. They also thank Professor Fred Naidor, City University of New York, New York for useful discussions.

References

- 1 Vishnyakova T P, Golubeva I A & Glebova E V, *Russ Chem Rev (Engl Trans)*, 54, **1985**, 249.
- 2 Matsuda K, *Med Res Rev*, 14, **1994**, 271.
- 3 Getman D P, DeCrescenzo G A, Heintz R M, Reed K L, Talley J J, Bryant M L, Clare M, Houseman K A, Marr J J, Mueller R A, Vazquez M L, Shieh H S, Stallings W C & Stegman R A, *J Med Chem*, 36, **1993**, 288.
- 4 Castro J L, Ball R G, Broughton H B, Russell M G N, Rathbone D, Watt A P, Baker R, Chapman K L, Fletcher A E, Patel S, Smith A J, Marshall G R, Ryecroft W & Matassa V G, *J Med Chem*, 39, **1996**, 842.
- 5 von Geldern T W, Kester J A, Bal R, Wu-Wong J R, Chiou W, Dixon D B & Opgenorth T J, *J Med Chem*, 39, **1996**, 968.
- 6 Bakshi P & Wolfe M S, *J Med Chem*, 47, **2004**, 6485.
- 7 Esler W P, Das C & Wolfe M S, *Bioorg Med Chem Lett*, 14, **2004**, 1935.
- 8 Gellman S H, *Acc Chem Res*, 31, **1998**, 173.
- 9 Kirshenbaum K, Zuckermann R N & Dill K A, *Curr Opin Struct Biol*, 9, **1999**, 530.
- 10 Barron A E & Zuckermann R N, *Curr Opin Chem Biol*, 3, **1999**, 681.
- 11 Yu E A & Chipens G I, *Bioorganicheskaya Khimiya*, 1, **1975**, 1410.
- 12 Vegner R E & Chipens G I, *Zhurnal Obshchey Khimii*, 45, **1975**, 444.
- 13 Myers A C, Kowalski J A & Lipton M A, *Bioorg Med Chem Lett*, 14, **2004**, 5219.
- 14 Shriner R L, Horne W H & Cox R F B, *Org Synth*, 2, **1943**, 453.
- 15 Nowick J S, Powell N A, Nguyen T M & Noronha G, *J Org Chem*, 57, **1992**, 7364.
- 16 Batey R A, Santhakumar V, Yoshina-Ishii C & Taylor S D, *Tetrahedron Lett*, 39, **1998**, 6267.
- 17 Takeda K, Akagi Y, Saiki A, Tsukahara T & Ogura H, *Tetrahedron Lett*, 24, **1983**, 4569.
- 18 Izdebski J & Pawlak D, *Synthesis*, **1989**, 423.
- 19 Majer P & Randad R S, *J Org Chem*, 59, **1994**, 1937.
- 20 Lamothe M, Perez M, Colovray-Gotteland V & Halazy S, *Synlett*, **1996**, 507.
- 21 Katritzky A R, Plcynet D P M & Yang B, *J Org Chem*, 62, **1997**, 4155.
- 22 Leung M-K, Lai J-L, Lau K-H, Lau H-h, Yu & Hsiao H-J, *J Org Chem*, 61, **1996**, 4175.
- 23 Braverman S, Cherkinsky M, Kedrova L & Reiselman A, *Tetrahedron Lett*, 40, **1999**, 3235.
- 24 Boeijen A, Ameijde J-v & Liskamp R M J, *J Org Chem*, 66, **2001**, 8454.
- 25 Boeijen A & Liskamp R M J, *Eur J Org Chem*, **1999**, 2127.
- 26 (a) Smith P A S, *Org React* 3, **1946**, 337; (b) Scriven E F & Turnbull K, *Chem Rev*, 88, **1988**, 297.
- 27 (a) Jean L, Baglin I, Rouden J, Maddaluno J & Lasne M C, *Tetrahedron Lett*, 42, **2001**, 5645; (b) Macor J E, Mullen G, Verhoest P, Sampognaro A, Shepardson B & Mack R A, *J Org Chem*, 69, **2004**, 6493.
- 28 (a) Washburne S S & Peterson W R Jr, *Synth Commun*, 2, **1972**, 227; (b) Van Reijendam J W & Baardman F, *Synthesis*, **1973**, 413; (c) Brandstrom A, Lamm B & Palmertz I, *Acta Chem Scand*, 28, **1974**, 699; (d) Erhardt P W, *J Org Chem*, 4, **1979**, 883; (e) Patil B S, Vasanthakumar G-R & Sureshbabu V V, *J Org Chem*, 68, **2003**, 7274.
- 29 (a) Weinstock J, *J Org Chem*, 26, **1961**, 3511; (b) Overman L E, Taylor G F, Petty C B & Jessup P J, *J Org Chem*, 43, **1978**, 2164; (c) Guichard G, Semetey V, Rodriguez M & Briand J-P, *Tetrahedron Lett*, 41, **2000**, 1553; (d) Englund E A, Gopi H N & Appella D H, *Org Lett*, 6, **2004**, 213.
- 30 (a) Lee J G & Kwak K H, *Tetrahedron Lett*, 33, **1992**, 3165; (b) Bandgar B P & Pandit S S, *Tetrahedron Lett*, 43, **2002**, 3413; (c) Bose D S & Reddy A V N, *Tetrahedron Lett*, 44, **2003**, 3543.
- 31 (a) Ende D J, DeVries K M, Clifford P J & Brenek S J, *Org Proc Res Dev*, 2, **1998**, 382; (b) Nettekoven M & Jenny C, *Org Proc Res Dev*, 7, **2003**, 38.
- 32 Affandi H, Bayquen A V & Read R W, *Tetrahedron Lett*, 35, **1994**, 2729.
- 33 Guichard G, Semetey V, Didierjean C, Aubry A, Briand J-P & Rodriguez M, *J Org Chem*, 64, **1999**, 8702.
- 34 Fischer L, Semetey V, Lozano J-M, Schaffner A-P, Briand J-P, Didierjean C & Guichard G, *Eur J Org Chem*, **2007**, 2511.
- 35 Hudson D, *Peptide Res*, 3, **1990**, 51.
- 36 Kisfaludy L, Schon I, Szirtes T, Nyeki O & Low M, *Tetrahedron Lett*, **1974**, 1785.
- 37 Wang Y H & Xu J C, *Synthesis*, 6, **1990**, 845.
- 38 Vasanthakumar G R, Patil B S & Sureshbabu V V, *Lett Pept Sci*, 9, **2002**, 207.